USING LOW-COST AGRICULTURE MATERIAL FOR HEAVY METALS REMOVAL FROM AQUEOUS SOLUTIONS

REDA AHMED EWHAIDA

MASTERS OF SCIENCE IN WATER RESOURCES INFRASTRUCTURE UNIVERSITY KUALA LUMPUR

2017

USING LOW-COST AGRICULTURE MATERIAL FOR HEAVY METALS REMOVAL FROM AQUEOUS SOLUTIONS

By

REDA AHMED EWHAIDA

Thesis Submitted in Partial Fulfillment as the Requirement for the Master of Science in Water Resources by Mix Mode Degree in the Faculty of Engineering and Technology Infrastructure

IUKL

2017

Abstract of thesis presented to the Senate of Infrastructure University Kuala Lumpur in Partial fulfillment of the requirement for the degree of Master of Science in Water Resources

USING LOW-COST AGRICULTURE MATERIAL FOR HEAVY METALS REMOVAL FROM AQUEOUS SOLUTIONS

By

REDA AHMED EWHAIDA

JULY 2017

CHAIR: ASSOC. PROF. DR MANAL MOHSEN ABOOD

FACULTY: FACULTY OF ENGINEERING AND TECHNOLOGY INFRASTRUCTURE

Increasing the discharge of heavy metals into water streams is of special concern due to their effects on human health and the environment. Most conventional methods for removing heavy metals from water and waste water became inefficient and extremely expensive. Moreover, these methods have many disadvantages such as incomplete removal of contaminants, high reagent and energy requirements and the generation of toxic sludge/waste products that need further disposal treatments. The aim of this research is to investigate the potential of the agriculture waste materials for heavy metals removal from aqueous solutions as they are low cost, eco-friendly, and available in abundance. To achieve the research objective, the low-cost agriculture waste namely rice husk and sunflower husk are utilized as adsorbents for several heavy metals; copper (Cu), iron (Fe), and zinc (Zn). The research follows experimental approach to investigate the effect of husk particle size distribution, husks weight, contact time, pH, and mixing rate of the removal efficiency on the absorption process. The results are compared to the activated carbon, as the common adsorbent, under the same conditions to test their credibility. According to the experiments, the best parameters values are: Weight =20 g, Mixing rate =150 rpm, Contact time=90 min, pH=6.5 and Particle size= $300 \ \mu m$ for various concentrations. The rice husk achieved high percentages removal than sunflower husk, where it achieved 90%, 90%, and 86% for copper, iron, and zinc respectively for low concentrations. The absorption percentage decreased with the increase of aqueous solution concentrations. The ability of the unmodified rice husk and sunflower is promised compared with activated carbon. Comparing with other studies, the research experiments conditions provide better results. In general, the rice and sunflower husks prove their ability for heavy metals removal and can be considered as a good solution for water treatment.

ACKNOWLEDGMENT

First, all thanks to Allah who supported me during my study journey, my parents that encouraged me and pray for me to achieve my objectives, as well as I would like to thank my supervisor Assoc. Prof. Dr. Manal Mohsen Abood for all her encouragement and support.

APPROVAL

This thesis was submitted to Senate of Infrastructure University Kuala Lumpur (IUKL) and has been accepted as partial fulfillment of the requirement for the degree of Master of Science in Water Resources. The members of the thesis Examination Committee were as follows:

Ir .TENGKU ANITA BINTI RAJA HUSSIN

Position: Senior LecturerFaculty: Faculty of Engineering and Technology InfrastructureInfrastructure University Kuala Lumpur (IUKL)(Chairman)

NOR AZIDAWATI BINTI HARON

Position: LecturerFaculty: Faculty of Engineering and Technology InfrastructureInfrastructure University Kuala Lumpur (IUKL)(Internal Examiner)

DR. MOHD SOFIYAN SULAIMAN

Position: LecturerFaculty: Faculty of Engineering and Technology InfrastructureInfrastructure University Kuala Lumpur (IUKL)(Internal Examiner)

.....

Assoc. Prof. Dr. Manal Mohsen Abood

Director Centre for Postgraduate Studies Infrastructure University Kuala Lumpur (IUKL) Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Infrastructure University Kuala Lumpur or at any other institutions.

Name: Reda Ahmed Ewhaida

Signature:

Date:

TABLE OF CONTENT

ABSTRACT	ii
ACKNOWLEDGMENT	iv
APPROVAL	V
DECLARATION	vi
TABLE OF CONTENT	vii
LIST OF TABLES	X
LIST OF FIGURES	xiii

CHA	APTER		1
1	INT	RODUCTION	1
	1.1	Overview	1
	1.2	Problem Statement	2
	1.3	Research Objectives	3
	1.4	Research Significance	3
	1.6	Thesis Organization	4
2	LITI	ERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Heavy Metals	5
		2.2.1 Copper	6
		2.2.2 Iron	7
		2.2.3 Zinc	7
		2.2.4 Heavy Metal Effect	8
		2.2.5 Heavy Metals Removal	10
	2.3	Treatment Techniques for Removing Heavy Metal from Wastewater	11
		2.3.1 Chemical precipitation	14
		2.3.2 Ion exchange	14
		2.3.3 Membrane filtration	15
		2.3.4 Electrochemical treatments	15
		2.3.6 Flotation	16
		2.3.7 Adsorption	16
		2.3.8 Bio adsorption	19
	2.4	Common Adsorbents	21
	2.5	Agriculture Low-Cost Materials	22

		2.5.1	Rice Hu	sks	23
		2.5.2	Sunflow	er Husk	24
		2.5.3	Activate	d Carbon	25
	2.6	Previo	us Researc	h	25
		2.6.1	Previous	Research on Activated Carbon	25
		2.6.2	Previous	Research on Sunflower	26
		2.6.3	Previous	Research on Rice Husk	27
	2.7	Summa	ary		30
RESE	ARCH	METHO	DOLOG	Y	31
	3.1	Introdu	iction		31
	3.2	Resear	ch Approa	ch	31
	3.3	Materi	als and Ap	paratuses	33
	3.4	Materi	als Prepara	ition	34
		3.4.1	Low Co	st Agriculture Adsorbents	34
		3.4.2	Metals A	Adsorbates	34
	3.5	Batch	Experimen	ts	36
	3.6	Biosor	ption of Ea	auilibrium Isotherm	37
	3.7	Summa	ary		38
					• •
4	RES	ULTS A	ND DISCU	USSION	39
	4.1	Introdu	iction		39
	4.2	Results	suits and Discussions		39
		4.2.1	PH Effe		40
			4.2.1.1	Effect of PH on the Adsorption of Copper	40
			4.2.1.2	Effect of PH On The Adsorption of Iron	43
		1 2 2	4.2.1.3	Effect of PH On The Adsorption of Zinc	45
		4.2.2	Adsorbe	nt Particle Weight Effect	48
			4.2.2.1	Impact of Particle Weight On Adsorbent of Copper	48
			4.2.2.2	Impact of Particle Weight On Adsorbent of Iron	53
			4.2.2.3	Impact of Particle Weight On Adsorbent of Zinc	57
		4.2.3	Contact	Time Effect	60
			4.2.3.1	Effect of Contact Time on Adsorbent of Copper	60
			4.2.3.2	Effect of Contact Time on Adsorbent of Iron	67

			4.2.3.3	Effect of Contact Time on Adsorbent of Zinc	73
		4.2.4	Particle S	Size Effect	79
			4.2.4.1	Effect of Particle Size on the Adsorption of Copper	79
			4.2.4.2	Effect of Particle Size on the Adsorption of Iron	83
			4.2.4.3	Effect of Particle Size On the Adsorption of Zinc	86
		4.2.5	Mixing F	Rate Effect	90
			4.2.5.1	Effect of Mixing Rate on the Adsorption of Copper	90
			4.2.5.2	Effect of Mixing Rate on the Adsorption of Iron	97
			4.2.5.3	Effect of Mixing Rate on the Adsorption of Zinc	103
		4.2.6	Isotherm	Models	109
			4.2.6.1	Isotherm Models for Copper Ion Adsorption	109
			4.2.6.2	Isotherm Models For Iron Ion Adsorption	115
			4.2.6.3	Isotherm Models For Zinc Ion Adsorption	119
4.3 Adsorbent Efficiency		ency	122		
	4.4	Summa	ry		125
5	CON	CLUSIO	NS		127
	5.1	Introdu	ction		127
	5.2	Revisiti	ing the Re	search Objectives	127
	5.3	Conclu	sions		128
REFE	CRENCE	ËS			129
APPE	NDIX				141

5

LIST OF TABLES

Table 2.1:	Hazardous effects and toxicities limits of some heavy metals	
	(El-Kafrawy et al., 2016; Nguyen et al., 2013; Ahmed and	
	Ahmaruzzaman, 2016)	9
Table 2 2:	Heavy metal discharge concentration from different sectors	
	effluents (Lahot and Tiwari, 2016)	12
Table 2 3:	Treatment technologies for heavy metals removal	
	(Ahmaruzzaman, 2011; Ahmed and Ahmaruzzaman, 2016)	13
Table 2 4:	Comparison of the effectiveness of removal of different heavy	
	metals of various techniques (Lesmana et al., 2009)	20
Table 2.5:	Rice husk characteristics (Hegazi, 2013)	24
Table 2 6:	Characterization of sunflower residues (Jalali and Aboulghazi, 2013)	24
Table 3.1:	Research Materials	33
Table 3.2:	Research Apparatuses	33
Table 4.1:	Effect of pH value on copper removal using activated carbon	40
Table 4.2:	Effect of pH value on copper removal using rice husk	41
Table 4.3:	Effect of pH value on copper removal using sunflower husk	42
Table 4.4:	Effect of pH value on iron removal using activated carbon	43
Table 4.5:	Effect of pH value on iron removal using rice husk	44
Table 4.6:	Effect of pH value on iron removal using sunflower husk	45
Table 4.7:	Effect of pH value on zinc removal using activated carbon	46
Table 4 8:	Effect of pH value on zinc removal using rice husk	47
Table 4.9:	Effect of pH value on zinc removal using sunflower husk	48
Table 4.10:	Effect of activated carbon particle weights on copper removal	49
Table 4.11:	Effect of rice husk particle weights on copper removal	50
Table 4.12:	Effect of sunflower husk particle weights on copper removal	52
Table 4.13:	Effect of activated carbon particle weights on iron removal	53
Table 4 14:	Effect of rice husk particle weights on iron removal	54
Table 4 15:	Effect of sunflower husk particle weights on iron removal	56
Table 4 16:	Effect of activated carbon particle weights on zinc removal	57
Table 4.17:	Effect of rice husk particle weights on zinc removal	58
Table 4.18:	Effect of sun flower husk particle weights on zinc removal	59
Table 4.19:	Effect of contact time on copper removal using activated carbon	61

Table 4.20:	Effect of contact time on copper removal using rice husk	63
Table 4 21:	Effect of contact time on copper removal using sunflower husk	65
Table 4.22:	Effect of contact time on iron removal using activated carbon	67
Table 4.23:	Effect of contact time on iron removal using rice husk	69
Table 4.24:	Effect of contact time on iron removal using sunflower husk	71
Table 4.25:	Effect of contact time on zinc removal using activated carbon	73
Table 4.26:	Effect of contact time on zinc removal using rice husk	75
Table 4.27:	Effect of contact time on zinc removal using sunflower husk	77
Table 4.28:	Effect of activated carbon particle size on copper removal	79
Table 4.29:	Effect of rice husk particle size on copper removal	81
Table 4.30:	Effect of sunflower particle size on copper removal	82
Table 4.31:	Effect of activated carbon particle size on iron removal	83
Table 4.32:	Effect of rice husk particle size on iron removal	84
Table 4.33:	Effect of sun flower particle size on iron removal	85
Table 4.34:	Effect of activated carbon particle size on zinc removal	87
Table 4.35:	Effect of rice husk particle size on zinc removal	88
Table 4.36:	Effect of sun flower particle size on zinc removal	89
Table 4.37:	Effect of mixing rate on copper removal using activated carbon	91
Table 4.38:	Effect of mixing rate on copper removal using rice husk	93
Table 4.39:	Effect of mixing rate on copper removal using sunflower husk	95
Table 4.40:	Effect of mixing rate on iron removal using activated carbon	97
Table 4.41:	Effect of mixing rate on iron removal using rice husk	99
Table 4.42:	Effect of mixing rate on iron removal using sunflower husk	101
Table 4.43:	Effect of mixing rate on zinc removal using activated carbon	103
Table 4.44:	Effect of mixing rate on zinc removal using rice husk	105
Table 4.45:	Effect of mixing rate on zinc removal using sunflower husk	107
Table 4.46:	Isotherm constants for copper ion adsorption using activated carbon	n 110
Table 4.47:	Isotherm constants for copper ion adsorption using rice husk	113
Table 4.48:	Isotherm constants for copper ion adsorption using sunflower	114
Table 4.49:	Isotherm constants for iron adsorption using activated carbon	115
Table 4.50:	Isotherm constants for iron adsorption using rice husk	117
Table 4.51:	Isotherm constants for iron ion adsorption using sun flower husk	118
Table 4.52:	Isotherm constants for zinc adsorption using activated carbon	119
Table 4.53:	Isotherm constants for zinc adsorption using rice husk	120

Table 4.54:	Isotherm constants for zinc ion adsorption using sun flower husk	121
Table 4.55:	Comparison between adsorbents used by the research	123
Table 4.56:	Comparison between research outcome and other researches for	
	rich husk	124
Table 4.57:	Comparison between research outcome and other researches	
	for sunflower husk	125

LIST OF FIGURES

Figure 3.1:	Experimental Procedure	32
Figure 4.1:	Removal percentage of activated carbon particle weights on	
	copper removal	49
Figure 4.2:	Removal percentage of rice husk particle weights on copper	
	removal	51
Figure 4.3:	Removal percentage of sunflower particle weights on copper	
	removal	52
Figure 4.4:	Removal percentage of activated carbon particle weights on iron	
	removal	53
Figure 4 5:	Removal percentage of rice husk particle weights on iron removal	55
Figure 4 6:	Removal percentage of rice husk particle weights on iron removal	56
Figure 4 7:	Removal percentage of activated carbon particle weights on	
	zinc removal	57
Figure 4.8:	Removal percentage of rice husk particle weights on zinc removal	59
Figure 4.9:	Removal percentage of rice husk particle weights on zinc removal	60
Figure 4 10:	Effect of contact time on copper removal by activated carbon	62
Figure 4 11:	Effect of contact time on copper removal using rice husk	64
Figure 4.12:	Effect of contact time on copper removal using sun flower husk	66
Figure 4.13:	Effect of contact time on iron removal by activated carbon	68
Figure 4.14:	Effect of contact time on iron removal using rice husk	70
Figure 4.15:	Effect of contact time on iron removal using sunflower husk	72
Figure 4.16:	Effect of contact time on zinc removal by activated carbon	74
Figure 4 17:	Effect of contact time on zinc removal using rice husk	76
Figure 4.18:	Effect of contact time on zinc removal using sunflower husk	78
Figure 4.19:	Effect of activated carbon particle size on copper removal	80
Figure 4.20:	Effect of rice husk particle size on copper removal	81
Figure 4.21:	Effect of sunflower husk particle size on copper removal	83
Figure 4.22:	Effect of activated carbon particle size on iron removal	84
Figure 4.23:	Effect of rice husk particle size on iron removal	85
Figure 4 24:	Effect of sunflower husk particle size on iron removal	86
Figure 4.25:	Effect of activated carbon particle size on zinc removal	87
Figure 4.26:	Effect of rice husk particle size on zinc removal	89

Figure 4.27:	Effect of sunflower husk particle size on zinc removal	90
Figure 4.28:	Effect of mixing rate on copper removal using activated carbon	92
Figure 4.29:	Effect of mixing rate on copper removal using rice husk	94
Figure 4.30:	Effect of mixing rate on copper removal using sunflower husk	96
Figure 4.31:	Effect of mixing rate on iron removal using activated carbon	98
Figure 4.32:	Effect of mixing rate on iron removal using rice husk	100
Figure 4.33:	Effect of mixing rate on iron removal using sunflower husk	102
Figure 4.34:	Effect of mixing rate on zinc removal using activated carbon	104
Figure 4.35:	Effect of mixing rate on zinc removal using rice husk	106
Figure 4.36:	Effect of mixing rate on zinc removal using sunflower husk	108
Figure 4.37:	Langmuir and Freundlich adsorption models of copper removal	
	using activated carbon	110
Figure 4.38:	Langmuir and Freundlich adsorption models of copper removal	
	using rice husk	113
Figure 4.39:	Langmuir and Freundlich adsorption of copper removal using	
	sun flower husk	114
Figure 4.40:	Langmuir and Freundlich adsorption models of iron removal	
	using activated carbon	116
Figure 4.41:	Langmuir and Freundlich adsorption models of iron removal	
	using rice husk	117
Figure 4.42:	Langmuir and Freundlich adsorption of iron removal using	
	sun flower husk	118
Figure 4.43:	Langmuir and Freundlich adsorption models of zinc removal	
	using activated carbon	119
Figure 4.44:	Langmuir and Freundlich adsorption models of zinc removal	
	using rice husk	121
Figure 4.45:	Langmuir and Freundlich adsorption of zinc removal using	
	sun flowerhusk	122
Figure 6.1:	Visiting the rice factory in Kedah.	141
Figure 6.2:	The rice factory "Ong Chuan Hin Sdn Bhd"	141
Figure 6.3:	The rice store in the factory.	142
Figure 6.4:	Collecting the sample of the rice husk.	142
Figure 6.5:	Collecting the sample of rice husk.	143
Figure 6.6:	Preparing the sample in the lab.	143

Figure 6.7:	Grinding the sample in the lab.	144
Figure 6.8:	Drying the sample in the oven.	144
Figure 6.9:	Mixing the sample with the absorbet.	145
Figure 6.10:	Preparing the stuck solution.	145
Figure 6.11:	Preparing samples to put in the jar.	146
Figure 6.12:	Samples are ready to determine the removal of heavy metals.	146
Figure 6.13:	Samples in the jar for the mixing.	147

CHAPTER 1

INTRODUCTION

1.1 Overview

Around 97.5% of the total available water on earth is salty and is not usable as such; of the remaining 2.5% of fresh water, only a marginal part, 1%, is available for human consumption. Since the distribution of water across the globe is not regular, parts of world are increasingly facing water scarcity. The origin of water scarcity can be natural in some regions because of reduced rainfall or climate changes. The human factor, however, is most critical in aggravating this problem by wasting water, polluting water resources, and/or in appropriately managing water. The world statistics reveal that the total wastewater combining sewage, industrial, and agricultural discharged globally is tens of millions of cubic meters per day. Sadly, a significant portion of all waste water in developing countries is discharged untreated, resulting in large pollution of rivers and other water bodies (Ranade, and Bhandari, 2014).

The water quality has severely deteriorated globally in last few decades, mainly due to the anthropogenic activities, population growth, unplanned urbanization, rapid industrialization and unskilled utilization of natural water resources (Bhatnagar et al., 2015).

As the result of technological development the growth of industries, is an indicator of increased pollution, and a contamination source of continuous environment degradation including air, water, soil and biosphere. Water pollution is one of the global issues that need urgent and effective solutions for healthy environment. The rapid growth of various industries, such as fertilizer, metal plating, tanneries, mining, and textile industries, has increased the discharge of toxic heavy metals into water streams poses significant problems for both human health and the environment. Dyes, paints, printing, photography, paper, and petroleum refining industries also contribute to the presence of heavy metals in effluents (Lesmana et al., 2009; Anbia

REFERENCES

- Abbas, M. N., & Abbas, F. S. (2013).Utilization of Iraqi Rice Husk in the Removal of Heavy Metals from Wastewater. Research Journal of Environmental and Earth Sciences, 5(7), 370-380.
- Abdelhafez, A. A., & Li, J. (2016). Removal of Pb (II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers, 61, 367-375.
- Abood, M. M., Rajendiran, J., &Azhari, N. N. (2013). Agricultural Waste As Low Cost Adsorbent For The Removal Of Fe (Ii) Ions From Aqueous Solution. Research JournaL, 29.
- Aeslina, A. K., Alida, A., & Lee, K. W. (2013). Study on Ferum (Fe) and Zinc (Zn) Removal by using Rice Bran at Sungai Pelepah, Kota Tinggi, Johor.
- Ahmaruzzaman, M. (2011).Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1), 36-59.
- Ahmed, M. J. K., & Ahmaruzzaman, M. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39-47.
- Ahmad Khan, N., Ibrahim, S., &Subramaniam, P. (2004).Elimation of Heavy Metals from Wastewater Using Agricultural Wastes as Adsorbents.Malaysian Journal of Science, 23(1).
- AjayKumar, A. V., Darwish, N. A., & Hilal, N. (2009). Study of various parameters in the biosorption of heavy metals on activated sludge. World Applied Sciences Journal, 5(5).
- Akar, S. T., Akar, T., Kaynak, Z., Anilan, B., Cabuk, A., Tabak, Ö., ...&Gedikbey, T. (2009). Removal of copper (II) ions from synthetic solution and real wastewater by the combined action of dried Trametesversicolor cells and montmorillonite. Hydrometallurgy, 97(1), 98-104.

- Albadarin, A. B., Mo, J., Glocheux, Y., Allen, S., Walker, G., &Mangwandi, C. (2014). Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions. Chemical Engineering Journal, 255, 525-534.
- Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008).Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon.Dyes and pigments, 77(1), 16-23.
- Ali, R. M., Hamad, H. A., Hussein, M. M., &Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering, 91, 317-332.
- Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1), 482-488.
- Anbia, M., Kargosha, K., &Khoshbooei, S. (2015). Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chemical Engineering Research and Design, 93, 779-788.
- Asamoah, E. (2012). The Impact of Small Scale Gold Mining Activities on the Water Quality of River Birim in the Kibi Traditional Area (Doctoral dissertation).
- Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of hazardous materials, 97(1), 219-243.
- Barakat, M. A., & Schmidt, E. (2010).Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256(1), 90-93.
- Bartczak, P., Norman, M., Klapiszewski, Ł., Karwańska, N., Kawalec, M., Baczyńska, M., ...&Jesionowski, T. (2015). Removal of nickel (II) and lead (II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry.

- Benaissa, H., & Elouchdi, M. A. (2007). Removal of copper ions from aqueous solutions by dried sunflower leaves. Chemical Engineering and Processing: Process Intensification, 46(7), 614-622.
- Bernard, E., Jimoh, A., &Odigure, J. O. (2013). Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. Chem. Sci, 3(8), 3-9.
- Bhatnagar, A., Sillanpää, M., &Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification–A review. Chemical Engineering Journal, 270, 244-271.
- Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A. & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—A review. Journal of hazardous materials, 263, 322-333.
- Bouhamed, F., Elouear, Z., Bouzid, J., &Ouddane, B. (2016).Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environmental Science and Pollution Research, 23(16), 15801-15806.
- Cavaco, S. A., Fernandes, S., Quina, M. M., & Ferreira, L. M. (2007). Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials, 144(3), 634-638.
- Chávez-Guajardo, A. E., Medina-Llamas, J. C., Maqueira, L., Andrade, C. A., Alves, K. G., & de Melo, C. P. (2015). Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chemical Engineering Journal, 281, 826-836.
- Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich,
- Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto

phosphoric acid modified rice husk. Journal of Applied Chemistry, 3(1), 38-45.