BEHAVIOUR OF SELF-COMPACTING CONCRETE INCORPORATING ALUM SLUDGE WITH OTHER POZZOLANS AS UNARY AND BINARY BLENDED CEMENTITIOUS SYSTEMS

By

KHALID MOHAMMED BREESEM

Thesis Submitted in Fulfilment as the Requirement for Doctor of Philosophy (Civil Engineering) by Research Degree in the Faculty of Engineering and Technology Infrastructure

IUKL

2017

Abstract of the thesis presented to the senate of Infrastructure University Kuala lumpur in fulfilment of the requirement for degree of Doctor of Philosophy Civil Engineering

BEHAVIOR OF SELF-COMPACTING CONCRETE INCORPORATING ALUM SLUDGE WITH OTHER POZZOLANS AS UNARY AND BINARY BLENDED CEMENTITIOUS SYSTEMS

By

KHALID MOHAMMED BREESEM AUGUST 2017

Chair: Associate Prof. Dr. Manal Mohsen Abood Faculty: Faculty of Engineering & Technology Infrastructure

The conventional disposal (to landfill) of alum sludge produced from drinking water treatment plants is becoming a threat to the environment day by day as it contains hazardous substances. However, treated alum sludge (TAS), after calcination at temperature range of 100 to 950 °C for 2 hours by an interval of 100 °C, contains useful chemical compounds (like, silica and alumina) which are considered as main constituents of cement. This study explores the potential of treated alum sludge (TAS) at different percentages (with 5, 10, 15, 20, and 25%) to produce selfcompacting concrete (SCC). Through strength activity index (SAI) 750°C temperature was selected to produce TAS. The study also focused on the influence of TAS with silica fume (SF), fly ash (FA) and clinoptilolite (NZ) at different percentages (5, 10, and 15%) as binary blended pozzolans to produce SCC. Concrete mixes consist of total powder of 500 kg/m³. The proportion of fine aggregate content was kept 50.46% of the total aggregate. The experimental work was divided into three stages that includes 48 mixes as well as three control mixes that contains three different water to powder (w/p) ratio (0.36, 0.38, and 0.4). In the first stage, TAS is utilized as a unary blended system at different percentages (with 5, 10, 15, 20, and 25%) to get the optimum level of replacement. Then in the second stage, other pozzolans are also used as unary blended system in SCC. Finally in the third stage, TAS is utilized as binary blended pozzolanic system together with FA, SF and NZ. In all stage, fresh properties of SCC are determined to meet the flowability

requirements using the slump flow, v-funnel, v-funnel at T5 min, and L-box test. Bulk density, compressive strength, splitting tensile strength, flexural strength, and ultrasonic pulse velocity tests are conducted to evaluate the hardened properties. Group 3 (w/p ratio of 0.4) is selected to assess the durability properties of SCC. Shrinkage, initial surface absorption, water impermeability, water absorption tests; and tests on specimens exposed to elevated temperature and magnesium sulphate attack are also conducted to get the durability properties. Test results revealed that TAS can be utilized as a potential pozzolan to produce SCC. The early age (3 days) of compressive strength for all mixes ranges between 31.8 to 37.5 MPa for 100 mm standard cubes. The compressive strength at 28 days ranges between 49.5 to 85.8 MPa. Splitting tensile and flexural strengths are in between 3.91 to 5.68 MPa, and 5.59 to 8.96 MPa, respectively. The pore system of SCC is found refined in all mixtures with pozzolanic materials including TAS, SF, FA and NZ. Within pozzolanic activity index and characteristics of alum sludge, it can be considered it as natural pozzolanic. The experimental results showed an encouraging effect of TAS, SF, FA, and NZ on the fresh, hardened and durability properties of SCC up to 15%, 5%, 15%, and 10% replacement level, respectively. Therefore, alum sludge can be alternatively used in SCC either as unary or binary blended system with other pozzolans to achieve a greener and pollution free environment.

ACKNOWLEDGMENT

My utmost appreciation goes to Almighty God, for giving me enough health in completing my study. My thanks to all who contributed to the output of this research which I would like to thank them severally. First of all I would like to express my deepest gratitude to my supervisor Assoc. Professor Dr. Manal Mohsen Abood. Without her continuous optimism concerning this study, enthusiasm, encouragement and support this study would hardly have been completed also express my warmest gratitude to my co-supervisor Dr. A.B.A Amrul, who given me excellent guidance on this topic. The next appreciation goes to my beloved mother, brothers, sisters; my wife and our sons who did not stop in supporting me to complete this study and are always beside me in wherever I am and whatever I do. I love you all. Then, I owe my deepest gratitude to all faculty members and staffs of IUKL and especially I would thank the staffs of the laboratory of concrete represented by Mr. Muhamad Zuhair Abd Rasid who made the laboratory available to me at all times even at weekends. Special thanks go to the staff of material laboratory of Kumpulan Ikram Sdn Bhd for their assistance by using all available and relevant equipment to do different laboratory tests. I would like to express my deep thanks for my Head of Geotechnical laboratory, Madam Nural Fauziah Binti Aziz and her staff, for their assistance. While, I would like to thank staff in other universities that this thesis would not have been possible unless their help, all works and tests that were not available at IUKL, they have been done at Pusat Pengurusan Penyelidikan dan Instrumentasi and Concrete laboratories at the Universiti Kebangsaan Malaysia (UKM), Structure, construction materials, Material Characterization Laboratory (MCL laboratories of) as well as a concrete laboratory in the department of Chemical & Environmental Engineering Faculty of Engineering Laboratory and Department of Civil Engineering Universiti Putra Malaysia(UPM), Soil and concrete laboratories at the university of Malay, and G. Pottery Sdn Bhd in Jln Sungai, Buloh Kota Damansara, Petaling Jaya, Selangor, Malaysia. Finally, I am indebted to my friends and colleagues for helping me through encouragement helped and advice and specifically of them, Mr Temple Odimegwu and Mr Mohamed Fouad. They helped me to achieve the tests that need more than one person.

APPROVAL

This thesis was submitted to the Senate of Infrastructure University Kuala Lumpur (IUKL) and has been accepted as fulfilment of the requirement for the degree of (Doctor of Philosophy in Civil Engineering). The members of the Thesis Examination Committee were as follows:

Dr. Baskaran Kasi Faculty of Engineering and Technology Infrastructure Infrastructure University Lumpur (IUKL) (Chairmen)

Prof. Dr Ideris bin Zakaria Faculty of Engineering and Technology Infrastructure Infrastructure University Kuala Lumpur (IUKL) (Internal Examiner)

Assoc. Prof. Ir. Dr. Mohammed Alias Yusof Faculty of Engineering Universiti Pertahanan Nasional Malaysia (UPNM) (External Examiner)

Assoc. Prof. Dr. Maslina Jamil Faculty of Engineering and Built Environment National University of Malaysia (UKM) (External Examiner)

Assoc. Prof. Dr. Manal Mohsen Abood Director Centre for Postgraduate Studies Infrastructure University Kuala Lumpur (IUKL) Date:

DECLARATION

I, hereby, declare that this thesis, entitled 'Behaviour of Self-Compacting Concrete Incorporating Alum Sludge with Other Pozzolans as Unary and Binary Blended Cementitious Systems' is my own results except for quotations and citation which have duly acknowledged. I also declare that it has not been submitted anywhere for any award and is nor concurrently, submitted for any other degree at Infrastructure University Kuala Lumpur or at any other institution.

.....

KHALID MOHAMMED BREESEM

Date:

TABLE OF CONTENTS

TITLE PAGE	i
ABSTRACT	ii
ACKNOWLEDGMENT	iv
APPR OVAL	V
DECLARATION	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	XV
LIST OF TABLES	xxii
LIST OF ABBREVIATIONS	XXV
LIST OF SYMBOLS	xxvii

CHAPTER

1 INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	1
1.3	Research Objectives	3
1.4	Scope of the Work	3
1.5	Significance of the Study	4
1.6	Structure of Study	5

2 LITERATURE REVIEW

2.1	Introdu	Introduction		
2.2	Self-co	mpacting c	oncrete	8
2.3	Materia	als Used in	SCC	13
	2.3.1	Cement		14
		2.3.1.1	Blended Cement	14
		2.3.1.2	Binary, Ternary Blended Cement	14
2.4	Pozzol	anic Materi	als	16
	2.4.1	Pozzolan	ic Activity of Materials	17
2.5	Proper	ties of Pozz	olanic Materials Uses in SCC	18
	2.5.1	Fly ash		19
	2.5.2	Silica fun	ne	20
	2.5.3	Zeolite		23
	2.5.4	Alum slue	dge	25

Page

2.6	Proper	Properties of Self-Compacting Concrete with		
	Pozzol	anic Materials		
	2.6.1	Fresh properties of self-compacting concrete	39	
		with pozzolanic materials		
	2.6.2	Effect of pozzolanic materials on hardened	51	
		properties of SCC		
2.7	Durabi	lity of Self-Compacting Concrete	69	
	2.7.1	Initial Surface Absorption (ISA)	69	
	2.7.2	Water absorption of SCC	71	
	2.7.3	Permeability of SCC	73	
	2.7.4	Sulphate attack	75	
	2.7.5	SCC at Elevated temperature	77	
2.8	Resear	ch Gaps	81	

3 METHODOLOGY

3.1	Introdu	Introduction				
3.2	Experi	Experimental Work				
3.3	Raw M	laterials	85			
	3.3.1	Fine Aggregate	85			
	3.3.2	Coarse Aggregate	85			
	3.3.3	Water	86			
	3.3.4	Chemical Admixtures	86			
	3.3.5	Ordinary Portland cement (OPC)	86			
	3.3.6	Raw Alum Sludge and Treated Alum Sludge	87			
	3.3.7	Fly Ash	89			
	3.3.8	Silica Fume	89			
	3.3.9	Natural Zeolite (Clinoptilolite)	90			
3.4	Proced	ure of Tests on Materials	91			
	3.4.1	Obtaining Treated alum sludge (TAS) and it Its	91			
		Pozzolanic Properties				
	3.4.2	Strength Activity Index (SAI) of pozzolanic	93			
		materials				
	3.4.3	Chemical Composition Analyses of Materials	94			

	3.4.4	Thermal	testing	95
	3.4.5	Physical	Properties of Materials	96
	3.4.6	Mineralo	gical and Microstructure	97
		Characte	ristics	
3.5	Prepara	tion of SC	C and Mix Proportion of SCC	98
	3.5.1	Determin	nation of Mix Design Method	99
		3.5.1.1	EFNARC Design Method	99
		3.5.1.2	First Approach	99
	3.5.2	Mixing P	Procedure	100
	3.5.3	SCC Mix	Kes	100
		3.5.3.1	SCC Mixes with OPC and	100
			Pozzolanic Materials	
	3.5.4	Determin	ning Fresh Properties of SCC	103
		3.5.4.1	Slump Flow and T50 cm Tests	103
		3.5.4.2	Visual stability index (VSI)	104
		3.5.4.3	V-Funnel and V-Funnel at T ₅	106
			minutes Tests	
		3.5.4.4	L-Box Test	108
3.6	Harden	ed Propert	ies of SCC	109
	3.6.1	Unit Wei	ight of SCC	109
	3.6.2	Compres	sive Strength of SCC	109
	3.6.3	Splitting	tensile Strength of SCC	110
	3.6.4	Flexural	Strength of SCC	111
	3.6.5	Ultrasoni	ic pulse Velocity of SCC	112
	3.6.6	Shrinkag	e of SCC	113
3.7	Durabil	ity Tests o	of SCC	114
	3.7.1	Initial Su	rface Absorption of SCC	115
	3.7.2	Water Al	bsorption of SCC	116
	3.7.3	Permeabl	ility of SCC	117
	3.7.4	SCC in E	Elevated-Temperatures	118
3.9	Summa	nmary		

4 **RESULTS AND DISCUSSION**

	4.1	Introduc	ction		122
	4.2	Chemic	al Compos	sition of Raw Materials	122
		4.2.1	Chemical	Composition of Raw Alum Sludge	122
			with Elev	vated Temperature	
		4.2.2	Pozzolan	ic Chemical Composition for Use in	124
			SCC		
	4.3	Physica	l Propertie	s of Materials	126
		4.3.1	Scanning	Electron Microscope	127
			4.3.1.1	Images Analyses for Alum Sludge	127
				and Mortar	
			4.3.1.2	Images Analyses for OPC, SF, FA, and NZ	129
			4.3.1.3	XRD and TGA Investigation of alum	131
			1.5.1.5	sludge	101
	4.4	Strengt	h Activity	Index of Alum Sludge and Materials	132
	4.5	-	-	ssion on Experimental works in	134
		Stage I			
		4.5.1	Fresh pro	perties of SCC	134
			4.5.1.1	Slump flow and T50 cm test for TAS	135
			4.5.1.2	V-funnel Test for TAS	137
			4.5.1.3	L-box Test	139
			4.5.1.4	Visual Stability Index (VSI)	140
		4.5.2	Hardened	properties of SCC	140
			4.5.2.1	Hardened density of SCC	141
			4.5.2.2	Compressive strength of SCC	142
			4.5.2.3	Splitting tensile strength	143
			4.5.2.4	Relationship between Compressive	144
				and Splitting Tensile Strength	
			4.5.2.5	Flexural strength	147
			4.5.2.6	Ultra pulse velocity (UPV) and	148
				relation with compressive strength	
		4.5.3	Durabilit	y Performance	151
			4.5.3.1	Drying shrinkage of SCC	151

	4.5.3.2	Initial sur	face absorption	152
	4.5.3.3	Water per	meability test	154
	4.5.3.4	Water abs	orption	155
	4.5.3.5	SCC at El	evated Temperature	156
		4.5.3.5.1	Mass Loss after heating	156
		4.5.3.5.2	Residual compressive	157
			strengths after heating	
	4.5.3.6	SCC expo	sed to Magnesium sulphate	158
		4.5.3.6.1	Reduction in	159
			compressive strength due	
			to Magnesium Sulphate	
			Attack	
		4.5.3.6.2	Deviation in Mass of	161
			SCC Samples Exposed	
			to MgSO ₄	
4.5.4	Conclus	ion on Expe	rimental works in Stage II	163
Result	s and Discu	ussion on Ex	perimental works in	164
Stage l	Ι			
4.6.1	Fresh pr	operties of s	tage II	164
	4.6.1.1	Slump flo	w and T50 cm test for	164
		SF, FA, an	nd NZ	
	4.6.1.2	V-funn	el test for FA, SF, and NZ	166
	4.6.1.3	L-box t	est for FA, SF, and NZ	168
	4.6.1.4	Visual	Stability Index (VSI)	170
4.6.2	Hardene	d Properties	of SCC	171
	4.6.2.1	Unit Weig	ght of SCC	171
	4.6.2.2	Compress	ive strength of SCC	173
		4.6.2.2.1	Effect of Silica Fume	173
		4.6.2.2.2	Effect of Fly Ash	175
		4.6.2.2.3	Effect of Clinoptilolite	176
	4.6.2.3	Splitting T	Fensile Strength of SCC	177
		4.6.2.3.1	Effect of Silica fume	177
		4.6.2.3.2	Effect of Fly Ash	178

4.6

xi

		4.6.2.3.3		180
	4.6.2.4	Floyurol	Splitting Tensile Strength trength of SCC	181
	4.6.2.5		Pulse Velocity (UPV)	181
	4.0.2.3	4.6.2.5.1	Effect of Silica Fume on	184
		4.0.2.3.1	UPV	104
		4.6.2.5.2	Effect of Fly Ash on UPV	185
		4.6.2.5.3	Effect of Clinoptilolite on UPV	185
		4.6.2.5.4	Relation between	188
			Compressive	
			Strength and UPV	
1.6.3	Durabili	ty Performa	nce	195
	4.6.3.1	Initial Sur	face Absorption	195
	4.6.3.2	Water Imp	permeability Test	197
	4.6.3.3	Water Ab	sorption	198
	4.6.3.4	Magnesiu	m Sulfate	199
		4.6.3.4.1	Reduction in compressive	199
			strength due to sulphate	
			magnesium attack	
		4.6.3.4.2	Deviation in Mass of SCC	201
			Samples Exposed	
			to MgSO ₄ Solution	
	4.6.3.5	SCC Expo	osed to Elevated	202
		Temperati	ıre	
		4.6.3.5.1	SCC Mass Loss after heating	202
		4.6.3.5.2	Residual compressive strengths after heating	203
Results	s and Disci	ussion on Ex	perimental works in	204
Stage I			-	
4.7.1	Fresh pr	operties		204
	4.7.1.1	Slump flo	w and T50 cm test for TAS	204

4.7

	4.7.1.2	Visual Sta	bility Index (VSI)	205
	4.7.1.3	V-funnel 7	ſest	205
	4.7.1.4	L-box Tes	t	206
4.7.2	Hardene	ed Properties	s of SCC	207
	4.7.2.1	Unit Weig	ht of SCC	207
	4.7.2.2	Compressi	ive strength of SCC	208
		4.7.2.2.1	Effect of Binary Blended	208
			Pozzolans in SCC	
	4.7.2.3	Splitting T	ensile Strength of SCC	209
	4.7.2.4	Flexural S	trength of SCC	210
	4.7.2.5	Relation b	etween Compressive	211
		Strength a	nd UPV	
4.7.3	Durabilit	ty Performat	nce	212
	4.7.3.1	Drying Sh	rinkage of SCC	212
	4.7.3.2	Initial Sur	face Absorption	213
	4.7.3.3	Water Imp	permeability Test	215
	4.7.3.4	Water Abs	sorption	215
	4.7.3.5	Magnesiu	n Sulfate Attack	216
		4.7.3.5.1	Reduction in Compressive	216
			Strength due to Sulphate	
			Magnesium Attack	
		4.7.3.5.2	Deviation in Mass of SCC	218
			Samples Exposed to MgSO ₄	
			Solution	
	4.7.3.6	SCC at Ele	evated Temperature	219
		4.7.3.6.1	SCC Mass Loss after	219
			heating	
		4.7.3.6.2	Residual compressive	220
			strengths after heating	
Summa	ry			222

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

4.8

REFERENCES		226
5.3	Recommendation for Future Works	224
5.2	Achievement of objectives	223
5.1	Introduction	223

APPENDICES	251

LIST OF FIGURES

Figure 2.1	Rational construction system proposed by Ozawa	9			
Figure 2.2	Mix composition of SCC in comparison with normally				
	vibrated concrete by (Holschemacher & Klug, 2002)				
Figure 2.3	Methods for Achieving Self-compacting concrete (Okamura &	12			
	Ouchi, 2003)				
Figure 2.4	Excess Paste Theory by (Kennedy, 1940)	13			
Figure 2.5	(a) bulk fly ash (b) Typical Fly Ash 200x mag (Carette &	19			
	Malhotra, 1987)				
Figure 2.6	(a) Scanning electron microscopy of condensed silica fume	23			
	(Jaturapitakkul, et al., 2004) (Left) Silica fume powder				
	(Kosmatka H. & Wilson L., 2011)				
Figure 2.7	(a) Bulk Clinoptilolite (b) Morphology of NZ particles (Shon	23			
	& Kim, 2013)				
Figure 2.8	Typical water treatment and sludge treatment processes in a	27			
	water-treatment plant (Zhao, 2010)				
Figure 2.9	SEM observation of dewatered alum sludge (Yang, et al.,	29			
	2006)				
Figure 2.10	The Improvement Splitting Tensile Strength of SCC with time	59			
	(Dehn et al. 2000)				
Figure 3.1:	The flowchart of the research process	84			
Figure 3.2	Grading of fine and coarse Aggregate	85			
Figure 3.3	Processing of treated alum sludge (TAS)	88			
Figure 3.4	Picture showing the alum sludge with treatment	88			
Figure 3.5	Physical appearance of SF	89			
Figure 3.6	The physical appearance of NZ	90			
Figure 3.7	Pictures of preparation procedure of cubes to test	93			
Figure 3.8	(a) XRF testing machine (b) Manual hydraulic press	95			
Figure 3.9	Thermogravimetric Analyser (TGA) apparatus	96			
Figure 3.10	Photo of Malvern Mastersizer 2000 apparatus	97			

Figure 3.11	Instrument of (a) XRD machine (b) and(c) preparing of samples	98
Figure 3.12	SEM machine	98
Figure 3.13	Slump Flow Test	104
Figure 3.14	Visual Stability Index	105
Figure 3.15	Flow spread (a) with VSI equal 0 (b) with VSI equal 1	106
Figure 3.15	flow spread (a) with VSI equal 2 (b) with VSI equal 3	106
Figure 3.17	V-Funnel Test	107
Figure 3.18	(a) Schematic diagram (b) L-Box test	109
Figure 3.19	Universal testing machine for compressive strength	110
Figure 3.20	Set-up for splitting tensile strength test and progress of loading	111
Figure 3.21	Flexure strength test	112
Figure 3.22	Photo of the UPV equipment and the measurement in SCC	113
	specimens	
Figure 3.23	Set-up for free shrinkage test (a) extensometer gauge length	114
	(b) prisms of SCC with Demec points installed (c) one of the	
	readings results (d) prisms under test	
Figure 3.24	Set-up for ISAT equipment for SCC specimens	116
Figure 3.25	Concrete water permeability equipment during testing of	117
	specimens	
Figure 3.26	Photo of splitting machine for splitting SCC cubes into two	118
	parts	
Figure 3.27	Photo of slides SCC cubes after splitting into two parts and	118
	seemed the water penetration depth carried out by	
	permeability test	
Figure 3.28	Set-up of test and specimens subjected to elevated	120
	temperatures	
Figure 4.1	Particle Size Distribution of OPC, RAS, and TAS	126
Figure 4.2	Particle Size Distributions of Zeolite, Fly Ash, and Silica	127
	Fume	
Figure 4.3	XRD patterns of (a) RAS and (b) TAS at 750 °C	131
Figure 4.4	Analysis results of Thermogravimetric	132
Figure 4.5	Result of Strength activity index of calcined raw alum sludge	133

mortar at different temperatures at age of 7 days and 28 days

Figure 4.6:	SAI of mortar cubes for OPC and pozzolanic materials	134
Figure 4.7	L-box ratio vs. different percentage of alum sludge	139
Figure 4.8	Densities of SCC at various contents of TAS for (G1, G2, and	141
	G3)	
Figure 4.9	Compressive strength of SCC at various percentages of TAS	142
	with age	
Figure 4.10	Splitting tensile strength of SCC at various percentages of	144
	TAS with age	
Figure 4.11	Plot of splitting tensile strength against compressive strength	145
	of SCC	
Figure 4.12	Flexural strength of SCC at various percentages of TAS at 28	147
	days	
Figure 4.13	Relation between compressive strength and UPV at various	149
	percentages of TAS periods curing from 3 to 90 days (G1)	
Figure 4.14	Relation between compressive strength and UPV at various	150
	percentages of TAS periods curing from 3 to 90 days (G2)	
Figure 4.15	Relation between compressive strength and UPV at various	150
	percentages of TAS periods curing from 3 to 90 days (G3)	
Figure 4.16	Relation between Compressive strength and UPV of SCC at	151
	various percentages of TAS periods curing from 3 to 90 days	
	(G1, G2, and G3)	
Figure 4.17	Drying shrinkage of SCC at various percentages of TAS	152
Figure 4.18	Initial surface absorption of control and TAS incorporated	153
	SCC at 28 days	
Figure 4.19	Water penetration depth of SCC containing TAS at 28 days	154
Figure 4.20	Effect of TAS on water absorption of SCC mixes	156
Figure 4.21	Mass loss of different SCC mixes at various temperatures	157
Figure 4.22	The Residual strength of different SCC mixes at various	158
	temperatures	
Figure 4.23	Compressive strength of control and pozzolanic mixes	160
	submerged in 5% solution of MgSO4 after 90 days binary	
Figure 4.24	SCC Compressive strength of control and alum sludge mixes	160

submerged in 5% solution of $MgSO_4$ after 180 days

Figure 4.25	Reduction in compressive strength of control and containing	161
	TAS submerged in 5% solution of MgSO ₄ after 90 and 180	
	days	
Figure 4.26	Losses in mass between curing by tap water and stored in	162
	MgSO4 solution of specimens after 90 and 180 days	
Figure 4.27	L-box ratio vs. different percentage of silica fume	169
Figure 4.28	L-box ratio vs. different percentage of fly ash	169
Figure 4.29	L-box ratio vs. different percentage of zeolite	170
Figure 4.30	Densities of mixes with various contents of fly ash	172
Figure 4.31	Densities of mixes with various contents of silica fume	172
Figure 4.32	Densities of mixes with various contents of zeolite	173
Figure 4.33	Relationship between compressive strength of mixes at	174
	various percentages of SF with curing time	
Figure 4.34	Relationship between compressive strength of mixes at	175
	various percentages of FA with curing time	
Figure 4.35	Relationship between compressive strength of mixes at	176
	various percentages of NZ with curing time	
Figure 4.36	Splitting tensile strength at various percentages of SF with	178
	curing time	
Figure 4.37	Splitting tensile strength at various percentages of FA with	179
	curing time	
Figure 4.38	Splitting tensile strength at various percentages of NZ with	181
	curing time	
Figure 4.39	Flexural strength at various percentages of FA at 28 days	182
Figure 4.40	Flexural strength of mixes at various percentages of SF at 28	183
	days	
Figure 4.41	Flexural strength of mixes at various percentages of NZ at 28	184
	days	
Figure 4.42	UPV results of mixes at various percentages of SF	185
Figure 4.43	UPV results of mixes at various percentages of FA	186
Figure 4.44	UPV results of mixes at various percentages of NZ	187
Figure 4.45	Relation between compressive strength and UPV at various	188

percentages of SF (G1)

- Figure 4.46 Relation between compressive strength and UPV at various **188** percentages of SF (G2)
- Figure 4.47 Relation between compressive strength and UPV at various **189** percentages of SF (G3)
- Figure 4.48 Relation between compressive strength and UPV at various **189** percentages of SF (G1, G2, and G3)
- Figure 4.49 Relation between compressive strength and UPV at various 191 percentages of FA (G1)
- Figure 4.50 Relation between compressive strength and UPV at various 191 percentages of FA (G2)
- Figure 4.51 Relation between compressive strength and UPV at various 192 percentages of FA (G3)
- Figure 4.52 Relation between compressive strength and UPV at various 192 percentages of (G1, G2, and G3)
- Figure 4.53 Relation between compressive strength and UPV at various 193 percentages of NZ (G1)
- Figure 4.54 Relation between compressive strength and UPV at various 193 percentages of NZ (G2)
- Figure 4.55 Relation between compressive strength and UPV at various **194** percentages of NZ (G3)
- Figure 4.56 Figure 4.56: Relation between compressive strength and UPV **194** at various percentages of NZ (G1, G2, and G3)
- Figure 4.57 Initial surface absorption of control and silica fume mixes at 195 28 days
- Figure 4.58 Initial surface absorption of control and fly ash SCC at 28 196 days
- Figure 4.59 Initial surface absorption of control and zeolite SCC at 28 days 197
- Figure 4.60 Water penetration depth of pozzolanic materials mixes at 28 198 days
- Figure 4.61 Effect of pozzolanic materials on water absorption of SCC 199 mixes
- Figure 4.62 Compressive strength of control and pozzolanic mixes 200

submerged in 5% solution of $MgSO_4$ after 90 days

Figure 4.63	Compressive strength of control and pozzolanic mixes	200
	submerged in 5% solution of MgSO4 after 180 days binary	
Figure 4.64	Binary SCC Compressive strength of control and containing	201
	TAS, FA, SF and NZ submerged in 5% solution of $MgSO_4$	
	after 90 and 180 days	
Figure 4.65	Losses in mass between curing by tap water and stored in	202
	MgSO ₄ solution of specimens after 90 and 180 days	
Figure 4.66	Weight loss of different mixes of FA, SF and N at various	203
	temperatures	
Figure 4.67	The Residual strength of mixes including FA, NZ, and SF at	204
	various temperatures	
Figure 4.68	L-box ratio for binary blend cement	206
Figure 4.69	Densities of mixes in blended pozzolans	208
Figure 4.70	Relationship between compressive strength of mixes at	209
	various percentages of pozzolanic materials with time	
Figure 4.71	Splitting tensile strength with pozzolanic materials at periods	210
	curing of 7 to 90 days	
Figure 4.72	Flexural strength of mixes at various percentages of	211
	pozzolanic materials at 28 days	
Figure 4.73	Relation between compressive strength and UPV at various	212
	percentages of SCC in mixtures at periods curing of 3 to 90	
	days	
Figure 4.74	Relationship between age and drying shrinkage of mixes at	213
	various percentages of pozzolanic materials at periods curing	
	of 28 to 180 days	
Figure 4.75	Initial surface absorption of control and pozzolanic materials	214
	SCC at 28 days	
Figure 4.76	Water penetration depth of control and pozzolanic materials	215
	mixes at 28 days	
Figure 4.77	Effect of TAS and pozzolanic materials on water absorption of	216
	SCC mixes	
Figure 4.78	SCC Compressive strength of control and SCC containing	217

TAS, FA, SF and NZ submerged in 5% solution of MgSO₄ after 90 days

- Figure 4.79 Compressive strength of control and mix containing TAS, FA, 217 SF and NZ submerged in 5% solution of MgSO₄ after 180 days
- Figure 4.80 Reduction in compressive strength of C40 and mixes **218** containing TAS, FA, SF and NZ submerged in 5% solution of MgSO₄ after 90 and 180 days
- Figure 4.81 Losses in mass between curing by tap water and stored in 219 MgSO₄ solution of specimens after 90 and 180 days
- Figure 4.82 Weight loss of SCC mixes at various temperatures 220
- Figure 4.83 Residual strength of SCC mixes at various temperatures 221

LIST OF TABLES

Table 2.1	Blended cement according to ASTM C595, 2004, and EN197,	15
T 11 0 0		1.5
Table 2.2	Classification of fly ash according to ASTM C 618 (2003)	17
Table 2.3	Chemical and physical requirement of pozzolans materials (ASTM C 618)	17
Table 2.4	Chemical composition of FA produced from different coal	20
	sources (Ahmaruzzaman, 2010)	
Table 2.5	Chemical composition (% by mass) of fly ash samples	20
Table 2.6	Substance of Silicon dioxide of SF delivered from various	21
	alloy sources (ACI Committee 234, 2000)	
Table 2.7	Physical properties of some silica fume samples (Holland,	22
	2015)	
Table 2.8	Chemical composition (% by mass) for some samples of silica	22
	fume	
Table 2.9	Chemical composition (% by mass) from some Clinoptilolite	24
	samples	
Table 2.10	Physical properties from some Clinoptilolite samples	25
Table 2.11	Properties of clinoptilolite zeolite (a) Physical properties and	25
	(b) Chemical properties (Raymond, 1986)	
Table 2.12	Typical composition from some alum sludge samples	29
Table 2.13	Chemical Composition of samples from; Limestone,	31
	Metakaolin, Silica Fume, Red Mud, Bottom Ash, Marble	
	Powder, Alum sludge, Fly Ashes and Portland cement.	
Table 2.14	Outline of current reuse and upcoming (Babatunde & Zhao	38
	2007)	
Table 2.15	Acceptance Criteria for Self-compacting Concrete (EFNARC	40
	2002)	
Table 2.16	Fresh properties of SCC and accepted values (Soleymani et al.	47
	2013)	

Table 2.17	Compressive strength of SCC of some previous studies	57
Table 2.18	Review of previous studies on splitting tensile strength of	60
	SCC samples	
Table 2.19	Values of A and B gave by many researchers	61
Table 2.20	Relationships between compressive strength and splitting	62
	tensile strength of normal concrete and SCC	
Table 2.21	Review of some previous studies on the flexural strength	64
Table 2.22	Some Previous studies on drying shrinkage of various samples	66
	of SCC	
Table 2.23	Relationship between compressive strength and UPV of	68
	previous studies on samples SCC containing pozzolanic	
	materials	
Table 2.24	Grouping of concrete absorption based on ISAT values	69
	(Barnes, 1988)	
Table 2.25	Summary of previous studies on IAST of some samples SCC	70
Table 2.26	Summary of previous studies on water absorption of some	73
	samples SCC	
Table 2.27	Summary of previous studies on water penetration depths of	75
	some samples SCC	
Table 3.1	Physical Properties of fine and coarse aggregates	86
Table 3.2	Physical properties of OPC, TAS, FA, SF, and NZ	90
Table 3.3	Main elements of OPC, TAS, SF, FA, and NZ	91
Table 3.4	The details of mixtures used in PAI of treated alum sludge	92
Table 3.5	Strength activity index for pozzolanic materials	94
Table 3.6	Sets and Description of Mixes	101
Table 3.7	Mix proportion for SCC (kg/m ³)	102
Table 3.8	The VSI values by observation	105
Table 4.1	Chemical data for RAS, TAS at different temperatures	124
Table 4.2	Chemical composition OPC, RAS, TAS, SF, FA and NZ	125
	samples	
Table 4.3	Physical properties of RAS, TAS, OPC, FA, SF, and NZ	127
Table 4.4	SEM for mortar with alum sludge at different calcination	128
	temperatures	

Table 4.5	SEM of OPC and pozzolanic materials	130
Table 4.6	Slump Flow (mm) and T50 cm (sec) for TAS	136
Table 4.7	Flow Funnel Time and T5 minutes vs. different percentage of	138
	TAS	
Table 4.8	Visual stability index (VSI) results for TAS	140
Table 4.9	Comparison of experimental splitting tensile strength and	146
	theoretical splitting tensile strength	
Table 4.10	Slump Flow (mm) and T50 cm (sec) for SF	164
Table 4.11	Slump Flow (mm) and T50 cm (sec) for FA	165
Table 4.12	Slump Flow (mm) and T50 cm (sec) for NZ	166
Table 4.13	Flow Funnel Time and T5 minutes vs. different percentage of	167
	FA	
Table 4.14	Flow Funnel Time and T5minutes vs. different percentage of	167
	SF	
Table 4.15	Flow Funnel Time and T5minutes vs. different percentage of	168
	NZ	
Table 4.16	Visual stability index (VSI) results for pozzolanic materials	171
Table 4.17	Relationship between the compressive strength and UPV for	190
	the three groups of mixes inclusion SF	
Table 4.18	Slump Flow (mm) and T50 cm (sec) blend cement	205
Table 419	Visual stability index (VSI) results	205
Table 4.20	V-funnel Time and T5 minutes for binary blend cement	206

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
Al ₂ O ₃	Aluminium (III) oxide
ASTM	American Society for Testing and Materials
BS	British Standards
C_2S	Di calcium silicate
C ₃ A	Tri calcium aluminate
C_3S	Tri calcium silicate
C ₄ AF	Tetra calcium alumina-ferrite
CSH	Calcium Silicate Hydrate
EFNARC	European Guidelines for Self-Compacting Concrete
EPA	Environmental Protection Agency
F_2O_3	Iron (II) oxide
FA	Fly Ash
GGBS	Ground granulated blast-furnace slag
ISI	Indian Standards Institution
ISAT	Initial surface absorption test
ITZ	Interfacial transition zone
IUKL	Infrastructure University Kuala Lumpur
LA	Los Angeles
LOI	Loss on Ignition
LPSD	Laser particle distribution size
m^2/g	Square meter per kilogram
Mg	Magnesium
MgO	Magnesium oxide
MgSO ₄	Magnesium Sulphate
MK	Metakaolin
MnO	Manganese oxide
ND	No data
NVC	Non -vibrated concrete
NZ	Natural zeolite

OPC	Ordinary Portland cement
PAI	Pozzolanic activity index
РС	Portland cement
PSD	Pore size distribution
RAS	Raw alum sludge
RILEM	The International Union of Laboratories and Experts in
	Construction Materials, Systems and Structure
SAI	Strength activity index
SCC	Self-Compacting Concrete
SEM	Scanning electronic microscope
SF	Silica fume
SiO2	Silicon dioxide (silica)
SP	Superplasticizer
SSA	Specific surface area
TAS	Treated alum sludge
TGA	Thermo gravimetric analysis
UKM	Universiti Kebangsaan Malaysia
UM	Universiti of Malaya
UPM	Putra Malaysia
UPV	Ultrasonic pulse velocity
VMA	viscosity-modifying agents
wt.	weight
WTP	Water treatment plant
XRD	X-ray diffraction
XRF	X-ray fluorescence
HWRA	High water reducing agent
SCM	supplementary materials

LIST OF SYMBOLS

&	And
μm	Micrometre (10-6 metre)
°C	Degree Celsius
Å	Angstrom (10-6 meter)
С	Cement content by weight
cm	Centimetre
d ₅₀	The median diameter or the medium value of the particle size distribution
$f_{c'}$	Compressive strength
$F_{\rm V}$	V-funnel flow time in mortar and concrete tests
h	Hour
${\rm H}_2{\rm O}$	Water
kg	Kilogram
kg/m ³	Kilogram per cubic metre
kN	Kilo Newton
m	metre
m/s	metre per second
min	Minute
mL	Millilitre
mm	Millimetre
MPa	Mega Pascal (N per mm2)
R^2	Coefficient of correlation
sec	Second
SP	Superplasticizer
T ₅₀ cm	Time for a concrete flow to 50 cm in diameter in slump flow test
w/c	Water/cement ratio
w/p	Water/powder ratio

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A Large quantity of alum sludge is generated each year from water treatment plants in Malaysia. An estimated over 2.0 million tonnes of water treatment sludge or residue (WTS) is produced annually by the water operators throughout the Malaysia. There is no doubt, alum sludge (AS) will continue to generate for a long time in future. There are no specific standards for drinking water treatment sludge (i.e. AS), but Act 672 :Solid Waste And Public Cleansing Management 2007 (Quality, 2007) categorised sludge that contains one or more metals including that alum sludge. For that matter, AS as the waste material will continue to be generated. This would result in massive quantities and require a high cost for disposal, and there would also be environmental effects as these wastes continue to accumulate. Therefore, this research aims to explore the potential reuse of alum sludge in the production of selfcompacting concrete (SCC) as a partial replacement of cement which is so far remained unused and has not been studied.

1.2 Problem Statement

Existing methods for the disposal of alum sludge that is produced from drinking water treatment plants by landfill became unsafe and unfriendly to the environment as it contains heavy metals. In Malaysia, an estimated over 2.0 million tonnes of water treatment sludge or residue (WTS) is produced per year by the water operators throughout the country as a by-product of the process of purifying water for human consumption (National Water Services Commission (SPAN), 2010). The large quantities of alum sludge and the scarcity of land area are significant with growing problem of alum sludge disposal can be alleviated if new disposal options other than the landfilling can be found. New studies emerging worldwide spotlight on reusing the alum sludge. Alum sludge can create a greener environment in construction as it contains useful chemical compounds similar to that of cement composites. Treatment

REFERENCES

- Abdul Razak, H., & Wong, H. S. (2005). Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research, 35(4), 688–695.
- ACI 363R-92. (1992). State- of -the- Art Report on High- Strength Concrete. ACI Committee report363. American Concrete Institute.
- ACI Committee 116. (2000). Cement and Concrete Technology, ACI 116R-00, ACI Committee 116 Report (p. 73 pages.). Farmington Hills, Michigan.
- ACI Committee 234. (2000). Guide for the Use of Silica Fume in Concrete. In ACI 234R-96 Reapproved 2000 (pp. 1–51).
- ACI Committee 318., & American Concrete Institute. (2011). Building code requirements for structural concrete (ACI 318-11) and commentary. American Concrete Institute.
- Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363.
- Akçaözoğlu, K., Fener, M., Akçaözoğlu, S., & Öcal, R. (2014). Microstructural examination of the effect of elevated temperature on the concrete containing clinoptilolite. Construction and Building Materials, 72, 316–325.
- Al-Akhras, N. M. (2006). Durability of metakaolin concrete to sulfate attack. Cement and Concrete Research, 36(9), 1727–1734.
- Alexander, M., Bertron, A., & Belie, N. De. (2012). Performance of Cement-based Materials in Aggressive Aqueous Environments (Vol. 10).
- Alqam, M., Jamrah, A., & Daghlas, H. (2011). Utilization of Cement Incorporated with Water Treatment Sludge. Jordan Journal of Civil Engineering, 5(2), 268– 277.
- American Public Health Association, American Water Works Association, & Water Environment Federation. (1999). Standard Methods for the Examination of Water and Wastewater (p. 541).
- Amrutha, N., Narasimhan, M., & Rajeeva, S. (2011). Chloride-ion impermeability of self-compacting high volume of fly ash concrete mixes. International Journal of Civil & Environmental Engineering IJCEE, (August), 29–33.
- Anagnostopoulos, N., Sideris, K. K., & Georgiadis, A. (2009). Mechanical characteristics of self-compacting concretes with different filler materials, exposed to elevated temperatures. Materials and Structures, 42(10), 1393–1405.

Annerel, E., Taerwe, L., & Vandevelde, P. (2007). Assessment of temperature