
BEHAVIOUR OF SELF-COMPACTING CONCRETE INCORPORATING 
ALUM SLUDGE WITH OTHER POZZOLANS AS UNARY AND BINARY 

BLENDED CEMENTITIOUS SYSTEMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

 
KHALID MOHAMMED BREESEM 

 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
Thesis Submitted in Fulfilment as the Requirement for Doctor of Philosophy 

(Civil Engineering) by Research Degree in the Faculty of Engineering and 
Technology Infrastructure  

 
 IUKL  

2017



ii 

 

Abstract of the thesis presented to the senate of Infrastructure University Kuala 

lumpur in fulfilment of the requirement for degree of Doctor of Philosophy Civil 

Engineering 

 

BEHAVIOR OF SELF-COMPACTING CONCRETE INCORPORATING ALUM 

SLUDGE WITH OTHER POZZOLANS AS UNARY AND BINARY BLENDED 

CEMENTITIOUS SYSTEMS 

 
By 

 
KHALID MOHAMMED BREESEM  

AUGUST 2017 

 
Chair: Associate Prof. Dr. Manal Mohsen Abood  

Faculty: Faculty of Engineering & Technology Infrastructure 

 
The conventional disposal (to landfill) of alum sludge produced from drinking water 

treatment plants is becoming a threat to the environment day by day as it contains 

hazardous substances. However, treated alum sludge (TAS), after calcination at 

temperature range of 100 to 950 ºC for 2 hours by an interval of 100 ºC, contains 

useful chemical compounds (like, silica and alumina) which are considered as main 

constituents of cement. This study explores the potential of treated alum sludge 

(TAS) at different percentages (with 5, 10, 15, 20, and 25%) to produce self-

compacting concrete (SCC). Through strength activity index (SAI) 750ºC 

temperature was selected to produce TAS. The study also focused on the influence of 

TAS with silica fume (SF), fly ash (FA) and clinoptilolite (NZ) at different 

percentages (5, 10, and 15%) as binary blended pozzolans to produce SCC. Concrete 

mixes consist of total powder of 500 kg/m3. The proportion of fine aggregate content 

was kept 50.46% of the total aggregate. The experimental work was divided into 

three stages that includes 48 mixes as well as three control mixes that contains three 

different water to powder (w/p) ratio (0.36, 0.38, and 0.4). In the first stage, TAS is 

utilized as a unary blended system at different percentages (with 5, 10, 15, 20, and 

25%) to get the optimum level of replacement. Then in the second stage, other 

pozzolans are also used as unary blended system in SCC. Finally in the third stage, 

TAS is utilized as binary blended pozzolanic system together with FA, SF and NZ. 

In all stage, fresh properties of SCC are determined to meet the flowability 
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requirements using the slump flow, v-funnel, v-funnel at T5 min, and L-box test. 

Bulk density, compressive strength, splitting tensile strength, flexural strength, and 

ultrasonic pulse velocity tests are conducted to evaluate the hardened properties. 

Group 3 (w/p ratio of 0.4) is selected to assess the durability properties of SCC. 

Shrinkage, initial surface absorption, water impermeability, water absorption tests; 

and tests on specimens exposed to elevated temperature and magnesium sulphate 

attack are also conducted to get the durability properties. Test results revealed that 

TAS can be utilized as a potential pozzolan to produce SCC. The early age (3 days) 

of compressive strength for all mixes ranges between 31.8 to 37.5 MPa for 100 mm 

standard cubes. The compressive strength at 28 days ranges between 49.5 to 85.8 

MPa. Splitting tensile and flexural strengths are in between 3.91 to 5.68 MPa, and 

5.59 to 8.96 MPa, respectively.  The pore system of SCC is found refined in all 

mixtures with pozzolanic materials including TAS, SF, FA and NZ. Within 

pozzolanic activity index and characteristics of alum sludge, it can be considered it 

as natural pozzolanic. The experimental results showed an encouraging effect of 

TAS, SF, FA, and NZ on the fresh, hardened and durability properties of SCC up to 

15%, 5%, 15%, and 10% replacement level, respectively. Therefore, alum sludge can 

be alternatively used in SCC either as unary or binary blended system with other 

pozzolans to achieve a greener and pollution free environment. 
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1 CHAPTER 1 
 
 

INTRODUCTION 
 

 
1.1 Background of the Study 
 
 
A Large quantity of alum sludge is generated each year from water treatment plants 

in Malaysia. An estimated over 2.0 million tonnes of water treatment sludge or 

residue (WTS) is produced annually by the water operators throughout the Malaysia. 

There is no doubt, alum sludge (AS) will continue to generate for a long time in 

future. There are no specific standards for drinking water treatment sludge (i.e. AS), 

but Act 672 :Solid Waste And Public Cleansing Management 2007 (Quality, 2007) 

categorised sludge that contains one or more metals including that alum sludge. For 

that matter, AS as the waste material will continue to be generated. This would result 

in massive quantities and require a high cost for disposal, and there would also be 

environmental effects as these wastes continue to accumulate. Therefore, this 

research aims to explore the potential reuse of alum sludge in the production of self-

compacting concrete (SCC) as a partial replacement of cement which is so far 

remained unused and has not been studied. 

 
 
1.2 Problem Statement 
 
 
Existing methods for the disposal of alum sludge that is produced from drinking 

water treatment plants by landfill became unsafe and unfriendly to the environment 

as it contains heavy metals. In Malaysia, an estimated over 2.0 million tonnes of 

water treatment sludge or residue (WTS) is produced per year by the water operators 

throughout the country as a by-product of the process of purifying water for human 

consumption (National Water Services Commission (SPAN), 2010). The large 

quantities of alum sludge and the scarcity of land area are significant with growing 

problem of alum sludge disposal can be alleviated if new disposal options other than 

the landfilling can be found. New studies emerging worldwide spotlight on reusing 

the alum sludge. Alum sludge can create a greener environment in construction as it 

contains useful chemical compounds similar to that of cement composites. Treatment 
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