The Impact of Building Information Modeling on user's Behavior and It's reflection on Building Performance in Construction Industry in Libya

By

AHMAD ALI M. AMER

Thesis Submitted in Fulfilment as the Requirement for Doctor of Philosophy (Built Environment) by Research Degree in the Faculty of Architecture and Built Environment

IUKL

2017

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Infrastructure University Kuala Lumpur or other institution.

.....

AHMAD ALI M. AMER

Date:

Abstract of the thesis presented to the Senate of Infrastructure University Kuala Lumpur in fulfilment of the requirement for the degree of Doctor of Philosophy Built Environment

THE IMPACT OF BUILDING INFORMATION MODELING ADOPTION ON USER'S BEHAVIOR AND IT'S REFLECTION ON BUILDING PERFORMANCE IN CONSTRUCTION INDUSTRY IN LIBYA

By

AHMAD ALI M. AMER MAY 2017

Chair: Prof. Dr. Zulkifli Bin Hanafi Faculty: Architecture and Built Environment

Every evolution in technology has been achieved with advances in computer science. The result of each evolution is to provide more information to attain objectives easily. The present study employed primary data approach using questionnaire to survey the current situation of BIM adoption. A hypothesized model of BIM adoption configured as the interaction of CSFs, BIM adoption and B P. There were four hypotheses tested as pathway of exogenous, mediating and endogenous variables. The discussion analyses the main relative merits of using BIM and attempts to forecast their future. (Quantitative methodology using descriptive approach was employed. Using simple random sampling. SEM technique using Analysis of Moment Variance (AMOS) succeeded in establishing and validating an empirical model of BIM adoption in the construction industry in Libya. 1st order CFA, CFA, hypothesised model, generated model and re-specified model analysis succeeded in validating the detailed measurements. AMOS using technique, the succeeded in testing the mediating effect of BIM adoption the relationship between CSFs and BP. Interaction effect analysis between predictors and the mediator succeeded in explaining BP as endogenous variable. Path Analysis of Re-Specified model confirmed a direct positive significant influence of CSFs on the BIM adoption and BP. As achievement of research objectives, the CSFs succeeded in explaining BIM adoption, and confirmed BIM adoption as mediating variables. The present study concludes that CSFs should be considered as the main concern to predict BIM adoption for future Improvement of Building Performance. Through re-specified model analysis, the present study has a fundamental finding to the body of knowledge to configure an interaction of CSFs as predictors on the BIM adoption and Building Performance in the significant structural model.

Acknowledgment

It would not have been possible to write this doctoral thesis without the help and support of the kind people around me, to whom goes my deepest appreciation. First of all, I would like to sincerely thank my parents: Ali Mohamad Amer and Khadija Mohamad Amer, who paved the way for me to carry on studying to this stage. If it had not been for their contribution, I would not have been successful in my studies. I feel indebted to my great supervisor, Professor. Dr. Zulkifli Bin Hanafi, without whose support, guide and comments I could never have been successful in studying PhD. His invaluable pieces of advice were the source of light enlightening the vague pathway before me. Not only a knowledgeable supervisor, but also, he has always been a wonderful friend of mine.

My next appreciation goes to my family who were inspiring and understanding allowing me to concentrate on my studies and writing this thesis. Words cannot express my gratitude to my wife: Hiffa Nuri Alfortas, as she was a great company and support encouraging me to pursue my studies and my beloved children Nura Ahmad Ali Amer and Yahya Ahmad Ali Amer. Eventually, I would like to thank all the staff at Infrastructure University Kuala Lumpur (IUKL) who were kind enough to provide an academic environment for me, as well as other students.

APPROVAL

This thesis was submitted to the Senate of Infrastructure University Kuala Lumpur (IUKL) and has been accepted as fulfilment of the requirement for the degree of (Doctor of Philosophy in Built Environment). The members of the Thesis Examination Committee were as follows:

Prof. Dr. Faridah Ibrahim Faculty of Arts, Communication and Education Infrastructure University Lumpur (IUKL) (Chairmen)

Dr. Golnoosh Mantegh Faculty Architecture and Built Environment Infrastructure University Kuala Lumpur (IUKL) (Internal Examiner)

Assoc.Prof.Dr. Sr Syahrul Nizam Bin Kamaruzzaman Faculty of Built Environment University of Malysia (UM) (External Examiner)

Sr.Dr. Mohd Nasrun Bin Mohd Nawi School of Technology Management & Logistics University Utara Malaysia (UUM) (External Examiner)

Assoc. Prof. Dr: Manal Mohsen Abood Director Centre for Postgraduate Studies Infrastructure University Kuala Lumpur (IUKL) Date:

TABLE OF CONTENTS

TITLE PAGE	i
DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGMENT	iv
APPROVAL	V
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER

1

INTRO	DUCTION	1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Research Gap	5
1.4	Research Questions	5
1.5	Aim of the Study	6
1.6	Research Objectives	6
1.7	Scope of the Study	6
1.8	Significance of the Study	7
1.9	Thesis Structure	8

2 LITERATURE REVIEW

2.1	Introduction		9
2.2	Underpir	nning Theory to the BIM Adoption	9
	2.2.1	Technology Acceptance Model (TAM)	11
	2.2.2	Theory of Reason Action (TRA) and Theory	16
		of Planned Behaviour (TPB)	
	2.2.3	Building Information Modeling (BIM)	29
2.3	Critical	Success Factors (CSFs) on the BIM Adoption	30
	2.3.1	Perceived Usefulness (PU)	32
	2.3.2	Perceived Ease of Use (PEU)	33
	2.3.3	Senior Management Support (SMS)	35
	2.3.4	Training (T)	40

	2.3.5	Trust	40
	2.3.6	User Experience (UE)	43
	2.3.7	Technical Support (TS)	44
	2.3.8	User Involvement (UI)	45
	2.3.9	BIM Adoption (Mediating Variable)	45
2.4	Building	Performance (BP)	47
2.5	Concept	al Development on the Critical Success Factors	48
	(CSFs), I	BIM Adoption and Building Performance (BP)	
2.6	Summary	7	54

3 METHODOLOGY

3.1	Introduction	55
3.2	Research Nature	55
3.3	Research Design	56
3.4	Research Framework	57
3.5	Hypothesis Statements	59
3.6	Measurements Model for Exogenous variables	60
	(Confirmatory Factor Analysis-CFA).	
3.7	Measurement Model of Endogenous Variables	63
3.8	Population and Sample	65
3.9	Data Collection Technique	66
3.10	Data Analysis Procedures	67
3.10.1	Descriptive Analysis	67
	3.10.2 Data Screening	67
	3.10.3 Data Reliability	68
	3.10.4 Structural Equation Modeling	69
3.11	Summary	70

4 DATA ANALYSIS AND FINDINGS

4.1	Introduction	71
4.2	Profiles of Respondents	72
4.3	Pre-Test and Pilot Test of Measurements	76
	4.3.1 Results of Pre-Test	79

		4.3.2	Results of Pilot Test	89
		4.3.3	Reliability Results of Actual Data	99
	4.4	Confirma	tory Factor Analysis(CFA) of Variables	109
		4.4.1	CFA of Senior management support (SMS)	109
		4.4.2	CFA of Training (T)	110
		4.4.3	CFA of User Trust (UT)	111
		4.4.4	CFA of User Experience (UE)	113
		4.4.5	CFA of Technical Support (TS)	114
		4.4.6	CFA of Perceived Usefulness (PU)	115
		4.4.7	CFA of Perceived Ease of Use (EOU)	117
		4.4.8	CFA of User Involvement (UP)	118
		4.4.9	CFA of BIM Adoption	119
		4.4.10	CFA of Building Performance (BP)	121
	4.5	Results c	of Hypothesis Testing	122
5	CONC	CLUSIONS	AND RECOMMENDATIONS	
	5.1	Introduct	ion	124
	5.2	Discussio	n on the Results of Hypothesis Testing	124
	5.3	Achieven	nent of Research Objectives	126
	5.4	Conclusio	ons	127
	5.5	Recomme	endations	127
	5.6	Contribut	tion of the Study	128
	5.7	Limitatio	n of the Study	129
	5.8	Suggestio	ons for further Study	129
REF	ERENC	ES		131
QUE	STIONN	AIRE		145
APPENDIX 1–4		152		

PUBLISHED PAPERS

252

LIST OF TABLES

		Page
Table 3.1	Research Hypothesis	59
Table 3.2	Standardized Regression Weights of Exogenous Variables	62
Table 3.3	Standardized Regression Weights of Exogenous Variables	64
Table 3.4	Sample Size Mechanism	66
Table 3.5	Multivariate Outliers Test Results	68
Table 4.1a	Profiles of Respondent based on Gender	72
Table 4.1b	Profiles of Respondent based on Age	72
Table 4.1c	Profiles of Respondent based on Educational	73
Table 4.1d	Profiles of Respondent based on Level	73
Table 4.1e	Profiles of Respondent based on Length of Working	73
Table 4.1f	Profiles of Respondent based on Former use of BIM	74
Table 4.1g	Profiles of Respondent based on User who develop BIM	74
Table 4.1h	Profiles of Respondent based on User who update BIM	74
Table 4.1i	Profiles of Respondent based on if their company only use	75
	BIM Modeling when required by the architect	
Table 4.1j	Profiles of Respondent based on capabilities of BIM that	75
	they utilize	
Table 4.1k	Profiles of Respondent based on percentage of projects that	75
	their company used BIM for in the last year	
Table 4.02	Summary of Reliability of Cronbach's Alpha for Pilot Test	78
Table 4.2a	Reliability Statistics of Senior management support	79
Table 4.2b	Item-Total Statistics of Senior management support	79
Table 4.3a	Reliability Statistics of Training	80
Table 4.3b	Item-Total Statistics of Training	80
Table 4.4a	Reliability Statistics of User Trust	81
Table 4.4b	Item-Total Statistics of User Trust	81
Table 4.5a	Reliability Statistics of User Experience	82
Table 4.5b	Item-Total Statistics of User Experience	82
Table 4.6a	Reliability Statistics of Technical Support	83
Table 4.6b	Item-Total Statistics of Technical Support	83

Table 4.7a	Reliability Statistics	of Perceive Usefulness	84
Table 4.7b	Item-Total Statistics	of Perceive Usefulness	84
Table 4.8a	Reliability Statistics	of Perceived Ease of Use	85
Table 4.8b	Item-Total Statistics	of Perceived Ease of Use	85
Table 4.9a	Reliability Statistics	of User Involvement	86
Table 4.9b	Item-Total Statistics	of User Involvement	86
Table 4.10a	Reliability Statistics	of BIM Adoption	87
Table 4.10b	Item-Total Statistics	of BIM Adoption	87
Table 4.11a	Reliability Statistics	of Building Performance	88
Table 4.11b	Item-Total Statistics	of Building Performance	88
Table 4.12a	Reliability Statistics	of Senior management support	89
Table 4.12b	Item-Total Statistics	of Senior management support	89
Table 4.13a	Reliability Statistics	of Training	90
Table 4.13b	Item-Total Statistics	of Training	90
Table 4.14a	Reliability Statistics	of User Trust	91
Table 4.14b	Item-Total Statistics	of User Trust	91
Table 4.15a	Reliability Statistics	of User Experience	92
Table 4.15b	Item-Total Statistics	of User Experience	92
Table 4.16a	Reliability Statistics	of Technical Support	93
Table 4.16b	Item-Total Statistics	of Technical Support	93
Table 4.17a	Reliability Statistics	of Perceive Usefulness	94
Table 4.17b	Item-Total Statistics	of Perceive Usefulness	94
Table 4.18a	Reliability Statistics	of Perceived Ease of Use	95
Table 4.18b	Item-Total Statistics	of Perceived Ease of Use	95
Table 4.19a	Reliability Statistics	of User Involvement	96
Table 4.19b	Item-Total Statistics	of User Involvement	96
Table 4.20a	Reliability Statistics	of BIM Adoption	97
Table 4.20b	Item-Total Statistics	of BIM Adoption	97
Table 4.21a	Reliability Statistics	of Building Performance	98
Table 4.21b	Item-Total Statistics	of Building Performance	98
Table 4.22a	Reliability Statistics	of Senior Management Support	99
Table 4.22b	Item-Total Statistics	of Senior Management Support	99
Table 4.23a	Reliability Statistics	of Training	100

Table 4.23b	Item-Total Statistics of Training	100
Table 4.24a	Reliability Statistics of User Trust	101
Table 4.24b	Item-Total Statistics of User Trust	101
Table 4.25a	Reliability Statistics of User Experience	102
Table 4.25b	Item-Total Statistics of User Experience	102
Table 4.26a	Reliability Statistics of Technical Support	103
Table 4.26b	Item-Total Statistics of Technical Support	103
Table 4.27a	Reliability Statistics of Perceive Usefulness	104
Table 4.27b	Item-Total Statistics of Perceive Usefulness	104
Table 4.28a	Reliability Statistics of Perceived Ease of Use	105
Table 4.28b	Item-Total Statistics of Perceived Ease of Use	105
Table 4.29a	Reliability Statistics of User Involvement	106
Table 4.29b	Item-Total Statistics of User Involvement	106
Table 4 30a	Reliability Statistics of BIM Adoption	107
Table 4 30b	Item-Total Statistics of BIM Adoption	107
Table 4.31a	Reliability Statistics of Building Performance	108
Table 4.31b	Item-Total Statistics of Building Performance	108
Table 4.32a	Standardized Regression Weights of (SMS)	110
Table 4.32b	Standardized Regression Weights of Training	111
Table 4.32c	Standardized Regression Weights of User Trust	112
Table 4.32d	Standardized Regression Weights of User Experience	114
Table 4.32e	Standardized Regression Weights of Technical Support	115
Table 4.32f	Standardized Regression Weights of Perceive Usefulness	116
Table 4.32g	Standardized Regression Weights of Perceive of Use	118
Table 4.32h	Standardized Regression Weights of User Involvement	119
Table 4.32i	Standardized Regression Weights of BIM Adoption	120
Table 4.32j	Standardized Regression Weights of Building	122
	Performance	
Table 4.33	Results of Hypothesis Testing	123
Table 5.01	Discussion on the Results of Hypothesis Testing	125
Table 5.02	Achievement of Research Objectives	126

LIST OF FIGURES

			Page
Figure	2.1	Evolution phases of Theory of Planned Behaviour	17
Figure	2.2	Theory of Planned Behavior (TPB)	20
Figure	2.3	Theory of Planned Behavior (TPB)	27
Figure	2.4	Technology Acceptance Model (TAM)	52
Figure	2.5	Proposal model	53
Figure	3.1	Research Framework on the BIM Adoption Model	57
Figure	3.2	Proposal Model	58
Figure	3.3	Measurement Model of Exogenous Variables	61
Figure	3.4	Measurement Model of Endogenous Variables	64
Figure	4.1	CFA of Senior management support	109
Figure	4.2	CFA of Training	110
Figure	4.3	CFA of User Trust	112
Figure	4.4	CFA of User Experience	113
Figure	4.5	CFA of Technical Support	115
Figure	4.6	CFA of Perceived Usefulness	116
Figure	4.7	CFA of Perceived Ease of Use	117
Figure	4.8	CFA of User Involvement	119
Figure	4.9	CFA of BIM Adoption	120
Figure	4.10	CFA of Building Performance	121

LIST OF ABBREVIATIONS

APPS	Application System
AEC	Architecture, Engineering, and Construction
AIA	American Institute of Architects
AMOS	Analysis of Moment Structures
BI	Behavioral Intention
BIM	Building Information Modeling
BREEAM	Building Research Establishment Environmental Assessment
	Methodology
CAD	Computer-Aided Design
CEO	Chief Executive Officer
CFA	Confirmatory Factor Analysis
CIO	Chief Information Officer
CSE	Computer Self-Efficacy
DF	Degree of Freedom
EIT	Engineer In Training
EOU	Ease of Use
GFI	Goodness of Fit Index
IBM	International Business Machines
ICTs	Information and Communication Technologies
IS	Information Systems
IT	Information Technology
MIS	Management Information System
OD	Organization Development
PBC	Perceived Behavioral Control
RMSEA	Root Mean Square Error of Approximation
SEM	Structural Equation Modeling
SMS	Senior Management Support
SPSS	Statistical Package for the Social Sciences
TAM	Technology Acceptance Model
TII	Theory of Information Integration
TLI	Tucker Lewis Index

- TPB Theory of Planned Behaviors
- TRA Theory of Reasoned Action
- PU Perceived Usefulness

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Building Performance (BP) associated with process of technology adoption is now becoming increasingly required and it has to be delivered and implemented in a sustainable manner (Gegana and Widjarnarso, 2015). Information Communication and Technology (ICT) has revolutionised the building design and the adoption of advanced modeling technologies in building design (Cao, et al., 2016). One of the latest technologies is Building Information Model (BIM). The present study identifies through a comprehensive literature review of the Critical Success Factors (CSFs) affecting BIM adoption (Zou, Kiviniemi and Jones, 2016; Nguyen, Shehab and Gao, 2010).

This study proposes an empirical model that examines these factors (Exogenous variables) "Senior Management Support (SMS), Training (T), User Trust(UT), User Experience(UE), Technical Support(TS), User Involvement(UI), Perceived Usefulness(PU), Perceived Ease of Use (PEU)" and Endogenous variables "Building Information Model (BIM), Building Performance (BP) that affecting the level of adoption and concerning the details involved in BIM for design construction in Libya. This proposed empirical model tested using Structural Equation Model (SEM). This model is expected to give guidelines for engineers, designers, developers and practitioners in the construction industry as well policy maker and stakeholder in the mentioned field (Newton and Chileshe, 2012).

Furthermore, with a rapid development of technological revolution, economic globalization and the fundamental change of social production method, human capital and social capital has become the key factor for a business organisation to the achievement of competitive advantage (Fang, et al., 2016). Management Information System (MIS) is charged with improving the performance of organisations and people through the employ of information technology. MIS is a multifaceted discipline, which

REFERENCES

- Abbasnejad, B. & Moud, H. (2013). BIM and Basic Challenges Associated with its Definitions, Interpretations and Expectations. *International Journal of Engineering Research and Applications*, Vol. 3, No. 2, pp. 287–294.
- Abubakar, M., Ibrahim, Y.M., Kado, D. & Bala, K. (2014). Contractors Perception of the Factors Affecting Building Information Modeling (BIM) Adoption in the Nigerian Construction Industry. *Computing in Civil And Building Engineering* @ASCE 2014, pp. 167-178.
- Abdulkadir, G. & John, Godfaurd Adjaie, J.G. (2015). An Overview of the Feasibility of Achieving Level 2 Building Information Modeling by 2016 in the UK. *Journal of Civil Engineering and Architecture*, Vol. 9, No. 8, pp. 885-894, ISSN 1934-7359.
- Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs, NJ: Prentice-Hall.
- Ajzen, I.,(1985) "From Intentions to Actions: A Theory of Planned Behavior," in K. J. Beckman, and J. Beckman, eds, Action Control: From Cognition to Behavior, Berlin: Springer, , pp. 11–39.
- Ajzen, I. (1991), "The Theory of Planned Behaviour", Organisational Behaviour and Human Decision Processes, Vol. 50, Iss. 2, pp. 179-212.
- Ajzen, I., & Fishbein, M. (1978). Use and misuse of Bayes' theorem in causal attribution: Don't attribute it to Ajzen & Fishbein either. Psychological Bulletin, 85, 244-246.
- Aksamija, A. (2013). Building Simulations and High-Performance Buildings Research Use of Building Information Modeling (BIM) for Integrated Design and Analysis. *Perkins+Will Research Journal*, Vol. 05, No. 01, pp. 19-37.
- Aksamija, A., Guttman, M., Rangarajan, H. & Meador, T. (2011). Parametric Control of BIM Elements for Sustainable Design in Revit: Linking Design and Analytical Software Applications through Customization. *Perkins+Will Research Journal*, Vol. 3, No. 1, pp. 32-45.
- Alwan, Z., Jones, P. & Holgate, P. (2016). Strategic Sustainable Development in the UK Construction Industry, Through the Framework for Strategic Sustainable Development, Using Building Information Modeling. *Journal of Cleaner Production, in press. ISSN* 0959-6526
- Arayici, Y., Khosrowshahi, F., Ponting, A.M., Mihindu, S., (2009b), "Towards Implementation of Building Information Modelling in the Construction Industry", Fifth International Conference on Construction in the 21st Century (CITC-V) "Collaboration and Integration in Engineering, Management and Technology" May 20-22, 2009, Istanbul, Turkey

Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C. & O'reilly, K. (2011).

BIM Adoption and Implementation for Architectural Practices. Structural Survey, Vol. 29, pp. 7-25.

- Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C. & O'Reilly, K. (2016) Technology Adoption in the BIM Implementation for Lean Architectural Practice. Automation in Construction, Vol. 20, No. 2, pp. 189-195.
- Atkinson, L., Amoako-Attah, J. & B-Jahromi, A. (2014). Government's Influence on the Implementation of BIM. Computing in Civil and Building Engineering @ASCE, pp. 520-527.
- Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks and Challenges for the AEC Industry. Leadership and Management in Engineering, Vol. 11, No. 3, pp. 241-252.
- Azhar, S., Carlton, W., Olsen, D. & Ahmad, I. (2011). Building Information Modeling for Sustainable design and LEED Rating Analysis. Automation in Construction, Vol. 20, No. 2, pp. 217-224.
- Balaras, C.A., Kontoyiannidis, S., Dascalaki, E.G. & Droutsa, K.G. (2013). Intelligent Services for Building Information Modeling - Assessing Variable Input Weather Data for Building Simulations. The Open Construction and Building Technology Journal, Vol. 7, pp. 138-145.
- Barlish, K. & Sullivan, K. (2012) How to Measure the Benefits of BIM A case study approach. Automation in Construction, Vol. 24, No. 1, pp. 149-159.
- Bavafa, M. (2014). Towards Interoperability in the UK Construction Design Industry. Computing in Civil and Building Engineering ©ASCE 2014, pp. 528-535.
- Behan, A. (2013). Update on the BIM Education of Geomatics Surveyors. *Proc. of CITA BIM Gathering Conference*, 14-15 Nov, pp. 163-168.
- Bhattacherjee, (2000). Acceptance of E-Commerce Services: The Case of Electronic Brokerages, Vol.30, No.4, pp 411-420.
- Bobbitt, L.M., Dabholkar, P.A., (2001). Integrating Attitudinal Theories to Understand and Predict Use of Technology-Based Self-Service: *The Internet as an Illustration. International Journal of Service Industry Management* 12 (5), 423-450.
- Bolpagni, M. (2013). The Implementation of BIM Within The Public Procurement. A Model-Based Approach for The Construction Industry. VTT Technology 130.
- Bruning, S.F. (2011). BIM test at ASHRAE HQ. ASHRAE Journal, Vol. 53, No. 4, pp. 28-36.
- Brundtland.(1987). Our common future call for action. Environmental Conservation 14(4): 291-294

- Bryde, D., Broquetas, M. & Volm, J.M. (2013). The Project Benefits of Building Information Modeling (BIM). *International Journal of Project Management*, Vol. 31, No. 7, pp.971-980.
- Bynum, P., Issa, R.A. & Olbina, S. (2012). Building Information Modeling in Support of Sustainable Design and Construction. *Journal of Construction Engineering* and Management. doi:10.1061/(asce)co.1943-7862.0000560
- Cao, D., Li, H., Wang, G. & Huang, T. (2016). Identifying and Contextualising the Motivations for BIM Implementation in Construction Projects: An empirical study in China. *International Journal of Project Management*, in press.
- Cerovsek, T.(2011). A Review and Outlook for a "Building Information Model" (BIM): A Multi-Standpoint Framework for Technological Development. Advanced Engineering Informatics, Vol. 25, No. 2, pp. 224-244.
- Ciribini, A.L.C., Ventura, S.M. & Paneroni, M. (2016). Implementation of an Interoperable Process to Optimise Design and Construction Phases of a Residential Building: A BIM Pilot Project. Automation in Construction, in press.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: *Lawrence Earlbaum Associates*.
- Chen, Y., Dib, H., Cox, R.F., Shaurette, M. & Vorvoreanu, M. (2016). Structural Equation Model of Building Information Modeling Maturity. *Journal of Construction Engineering and Management*, 04016032.
- Chen, Gillenson, Sherrell. (2002). Enticing online consumers: an extended technology acceptance perspective. Vol 39, pp 705–719.
- Childers, Carr, Peck, Carson. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Vol 77, pp 511–535.
- Cho, H., Lee, K.H., Lee, S.H., Lee, T., Cho, H.J., Kim, S.H. and Nam, S.H. (2011). Introduction of Construction Management Integrated System Using BIM in the Honam High-speed Railway Lot No.4-2. Proceedings of the 28th ISARC, Seoul, Korea.
- Cribbs, J., Hailer, J., Horton, P. & Chasey, A. (2015). Enhanced Collaboration Between Construction Management and Architecture Students Utilising a Building Information Modeling Environment. Proc. of the 9th BIM Academic Symposium, 7-8 April 2015, *Washington* D.C., pp. 159-166.
- Davis, F.D. (1989) "Perceived Usefulness(PU), perceived ease of use, and user acceptance of information technology", *MIS quarterly*, Vol. 13 No 3, pp 318-39.
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. *Management Science*, 35(8), 982-1003.

- Davis, Venkatesh. (2000). Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Vol. 46, No. 2, pp. 186–204.
- Davis, (2001). financial crises in "successful" emerging economies. United Nations Economic Commission for Latin Americaand the Caribbean.
- Demirdoven, J. (2015). An Interdisciplinary Approach to Integrate BIM in the Construction Management and Engineering Curriculum. Proc. of the 9th BIM Academic Symposium, 7-8 April 2015, *Washington* D.C., pp. 112-119.
- Dim, N.U., Ezeabasili, A.C.C. & Okoro, B.U. (2015). Managing the Change Process Associated with Building Information Modeling (BIM) Implementation by the Public and Private Investors in the Nigerian Building Industry. *Donnish Journal* of Engineering and Manufacturing Technology, Vol. 2, No. 1, pp. 001-006.
- Dossick, C.S. & Neff, G. (2011). Messy Talk and Clean Technology: Communication, Problem-Solving and Collaboration Using Building Information Modeling. *The Engineering Project Organisation Journal*, Vol. 1, No. 2, pp. 83-93.
- Eadie, R., Browne, M., Odeyinka, H., McKeown, C. & McNiff, S. (2013a). BIM Implementation Throughout the UK Construction Project Lifecycle: An Analysis. Automation in Construction, Vol. 36, pp. 145-151.
- Eadie, R., Odeyinka, H., Browne, M., McKeown, C. & Yohanis, M. (2013b) An Analysis of the Drivers for Adopting Building Information Modeling, *Journal* of Information Technology in Construction (ITcon), Vol. 18, pp. 338-352.
- Eadie, R., Odeyinka, H., Browne, M., McKeown, C. & Yohanis, M. (2014). Building Information Modeling Adoption: An Analysis of the Barriers to Implementation. *Journal of Engineering and Architecture*, Vol. 2, No. 1, pp. 77-101.
- Eastman, Teicholz .(2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd Edition.
- Fang, Y., Cho, Y.K., Zhang, S. & Perez, E. (2016). Case Study of BIM and Cloud– Enabled Real-Time RFID Indoor Localization for Construction Management Applications. *Journal of Construction Engineering and Management*, 05016003.
- Fatima, A., Saleem, M. & Alamgir, S. (2015). Adoption and Scope of Building Information Modeling (BIM) in Construction Industry of Pakistan. Prof. of 6th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka, pp. 90-99.
- Feng, C., Mustaklem, O. & Chen, Y. (2012). The BIM-Based Information Integration Sphere for Construction Projects. *Proceedings of the 28th ISARC Conference*, *Seoul, Korea*, pp. 156-161.
- Fenech & O'Cass, (2001). Internet users' adoption of web retailing user and product